Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
J Ovarian Res ; 17(1): 78, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600539

ABSTRACT

BACKGROUND: This study investigated the association between Anti-Müllerian Hormone (AMH) and relevant metabolic parameters and assessed its predictive value in the clinical diagnosis of polycystic ovarian syndrome (PCOS). METHODS: A total of 421 women aged 20-37 years were allocated to the PCOS (n = 168) and control (n = 253) groups, and their metabolic and hormonal parameters were compared. Spearman correlation analysis was conducted to investigate associations, binary logistic regression was used to determine PCOS risk factors, and receiver operating characteristic (ROC) curves were generated to evaluate the predictive value of AMH in diagnosing PCOS. RESULTS: The PCOS group demonstrated significantly higher blood lipid, luteinizing hormone (LH), and AMH levels than the control group. Glucose and lipid metabolism and hormonal disorders in the PCOS group were more significant than in the control group among individuals with and without obesity. LH, TSTO, and AMH were identified as independent risk factors for PCOS. AMH along with LH, and antral follicle count demonstrated a high predictive value for diagnosing PCOS. CONCLUSION: AMH exhibited robust diagnostic use for identifying PCOS and could be considered a marker for screening PCOS to improve PCOS diagnostic accuracy. Attention should be paid to the effect of glucose and lipid metabolism on the hormonal and related parameters of PCOS populations.


Subject(s)
Anti-Mullerian Hormone , Polycystic Ovary Syndrome , Female , Humans , Anti-Mullerian Hormone/blood , Glucose/metabolism , Luteinizing Hormone/blood , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Sensitivity and Specificity , Adult
2.
Sci Total Environ ; 928: 172321, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604373

ABSTRACT

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

3.
Cancer Med ; 13(5): e7026, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477492

ABSTRACT

BACKGROUND: Differential diagnosis of pancreatic solid lesion (PSL) and prognosis of pancreatic cancer (PC) is a clinical challenge. We aimed to explore the differential diagnostic value of sound speed (SS) obtained from endoscopic ultrasonography (EUS) in PSL and the prognostic value of SS in PC. METHODS: Patients with PSL in The Third Xiangya Hospital of Central South University from March 2019 to October 2019 were prospectively enrolled, who obtained SS from PSL. Patients were divided into the PC group and the pancreatic benign lesion (PBL) group. SS1 is the SS of lesions and SS2 is the SS of normal tissues adjacent to lesions. Ratio1 is equal to SS1 divided by SS2 of PSL (ratio1 = SS1/SS2). RESULTS: Eighty patients were enrolled (24 PBL patients, 56 PC patients). SS1 and ratio1 in PC group were higher compared with PBL group (SS1:1568.00 vs. 1550.00, Z = -2.066, p = 0.039; ratio1: 1.0110 vs. 1.0051, Z = -3.391, p = 0.001). The SS1 in PC (Z = -6.503, p < 0.001) was higher compared to SS2. In the nonsurgical group of PC, low ratio1 predicted high overall survival (OS) (7.000 months vs. 4.000 months; p = 0.039). In the surgical group of PC, low SS1 was associated with low median OS (4.000 months vs. 12.000 months; p = 0.033). CONCLUSIONS: SS plays a vital role in distinguishing between PBL and PC. Higher SS1 and ratio1 obtained by EUS are more related to PC than PBL. In PC patients, high SS1 may predict pancreatic lesions. In the nonsurgical group of PC, low ratio1 may predict high OS. However, in the surgical group of PC, low SS1 may predict low OS.


Subject(s)
Endosonography , Pancreatic Neoplasms , Humans , Diagnosis, Differential , Pancreas/pathology , Pancreatic Neoplasms/pathology , Prognosis
4.
Angew Chem Int Ed Engl ; 63(17): e202400254, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38441399

ABSTRACT

Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.

5.
Sensors (Basel) ; 24(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38544143

ABSTRACT

How to obtain internal cavity features and perform image matching is a great challenge for laparoscopic 3D reconstruction. This paper proposes a method for detecting and associating vascular features based on dual-branch weighted fusion vascular structure enhancement. Our proposed method is divided into three stages, including analyzing various types of minimally invasive surgery (MIS) images and designing a universal preprocessing framework to make our method generalized. We propose a Gaussian weighted fusion vascular structure enhancement algorithm using the dual-branch Frangi measure and MFAT (multiscale fractional anisotropic tensor) to address the structural measurement differences and uneven responses between venous vessels and microvessels, providing effective structural information for vascular feature extraction. We extract vascular features through dual-circle detection based on branch point characteristics, and introduce NMS (non-maximum suppression) to reduce feature point redundancy. We also calculate the ZSSD (zero sum of squared differences) and perform feature matching on the neighboring blocks of feature points extracted from the front and back frames. The experimental results show that the proposed method has an average accuracy and repeatability score of 0.7149 and 0.5612 in the Vivo data set, respectively. By evaluating the quantity, repeatability, and accuracy of feature detection, our method has more advantages and robustness than the existing methods.


Subject(s)
Algorithms , Laparoscopy , Minimally Invasive Surgical Procedures , Veins , Microvessels
6.
Plant Physiol Biochem ; 210: 108564, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38555719

ABSTRACT

Lignin is a phenolic biopolymer generated from phenylpropanoid pathway in the secondary cell wall and is required for defense of plants against various stress. Although the fact of stress-induced lignin deposition has been clearly demonstrated, it remains largely elusive how the formation of lignin is promoted under Cu stress. The present study showed that OsGLP8-7, an extracellular glycoprotein of rice (Oryza sativa L.), plays an important function against Cu stress. The loss function of OsGLP8-7 results in Cu sensitivity whereas overexpression of OsGLP8-7 scavenges Cu-induced superoxide anion (O2•-). OsGLP8-7 interacts with apoplastic peroxidase111 (OsPRX111) and elevates OsPRX111 stability when exposed to excess Cu. In OsGLP8-7 overexpressing (OE) lines, the retention of Cu within cell wall limiting Cu uptake into cytoplasm is attributed to the enhanced lignification required for Cu tolerance. Exogenous application of a lignin inhibitor can impair the Cu tolerance of transgenic Arabidopsis lines overexpressing OsGLP8-7. In addition, co-expression of OsGLP8-7 and OsPRX111 genes in tobacco leaves leads to an improved lignin deposition compared to leaves expressing each gene individually or the empty vector. Taken together, our findings provided the convincing evidences that the interaction between OsGLP8-7 and OsPRX111 facilitates effectively lignin polymerization, thereby contributing to Cu tolerance in rice.

7.
Cell Biol Int ; 48(4): 389-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38317355

ABSTRACT

Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.


Subject(s)
Adenine/analogs & derivatives , Intervertebral Disc Degeneration , Intervertebral Disc , Nucleus Pulposus , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Nucleus Pulposus/metabolism , Autophagy , Apoptosis , Methylation
8.
Sci Transl Med ; 16(733): eadg1323, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324639

ABSTRACT

Neuroinflammation is acknowledged as a pivotal pathological event after cerebral ischemia. However, there is limited knowledge of the molecular and spatial characteristics of nonneuronal cells, as well as of the interactions between cell types in the ischemic brain. Here, we used spatial transcriptomics to study the ischemic hemisphere in mice after stroke and sequenced the transcriptomes of 19,777 spots, allowing us to both visualize the transcriptional landscape within the tissue and identify gene expression profiles linked to specific histologic entities. Cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of ischemia-associated gene expression in the peri-infarct area of the ischemic hemisphere. Analysis of ligand-receptor interactions in cell communication revealed galectin-9 to cell-surface glycoprotein CD44 (LGALS9-CD44) as a critical signaling pathway after ischemic injury and identified microglia and macrophages as the main source of galectins after stroke. Extracellular vesicle-mediated Lgals9 delivery improved the long-term functional recovery in photothrombotic stroke mice. Knockdown of Cd44 partially reversed these therapeutic effects, inhibiting oligodendrocyte differentiation and remyelination. In summary, our study provides a detailed molecular and cellular characterization of the peri-infact area in a murine stroke model and revealed Lgals9 as potential treatment target that warrants further investigation.


Subject(s)
Brain Ischemia , Stroke , Mice , Animals , Stroke/drug therapy , Brain Ischemia/genetics , Brain Ischemia/pathology , Brain/metabolism , Microglia/metabolism , Ischemia , Gene Expression Profiling
9.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405706

ABSTRACT

IGF2BP2 (IMP2) is an RNA-binding protein that contributes to cancer tumorigenesis and metabolic disorders. Structural studies focused on individual IMP2 domains have provided important mechanistic insights into IMP2 function; however, structural information on full-length IMP2 is lacking but necessary to understand how to target IMP2 activity in drug discovery. In this study, we investigated the behavior of full-length IMP2 and the influence of RNA binding using biophysical and structural methods including mass photometry, hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS), and small angle x-ray scattering (SAXS). We found that full-length IMP2 forms multiple oligomeric states but predominantly adopts a dimeric conformation. Molecular models derived from SAXS data suggest the dimer is formed in a head-to-tail orientation by the KH34 and RRM1 domains. Upon RNA binding, IMP2 forms a pseudo-symmetric dimer different from its apo/RNA-free state, with the KH12 domains of each IMP2 molecule forming the dimer interface. We also found that the formation of IMP2 oligomeric species, which includes dimers and higher-order oligomers, is sensitive to ionic strength and RNA binding. Our findings provide the first insight into the structural properties of full-length IMP2, which may lead to novel opportunities for disrupting its function with more effective IMP2 inhibitors.

10.
Acta Pharmacol Sin ; 45(2): 312-326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37833535

ABSTRACT

Apoptosis plays a critical role in the development of heart failure, and sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid naturally occurring in blood plasma. Some studies have shown that SPC inhibits hypoxia-induced apoptosis in myofibroblasts, the crucial non-muscle cells in the heart. Calmodulin (CaM) is a known SPC receptor. In this study we investigated the role of CaM in cardiomyocyte apoptosis in heart failure and the associated signaling pathways. Pressure overload was induced in mice by trans-aortic constriction (TAC) surgery. TAC mice were administered SPC (10 µM·kg-1·d-1) for 4 weeks post-surgery. We showed that SPC administration significantly improved survival rate and cardiac hypertrophy, and inhibited cardiac fibrosis in TAC mice. In neonatal mouse cardiomyocytes, treatment with SPC (10 µM) significantly inhibited Ang II-induced cardiomyocyte hypertrophy, fibroblast-to-myofibroblast transition and cell apoptosis accompanied by reduced Bax and phosphorylation levels of CaM, JNK and p38, as well as upregulated Bcl-2, a cardiomyocyte-protective protein. Thapsigargin (TG) could enhance CaM functions by increasing Ca2+ levels in cytoplasm. TG (3 µM) annulled the protective effect of SPC against Ang II-induced cardiomyocyte apoptosis. Furthermore, we demonstrated that SPC-mediated inhibition of cardiomyocyte apoptosis involved the regulation of p38 and JNK phosphorylation, which was downstream of CaM. These results offer new evidence for SPC regulation of cardiomyocyte apoptosis, potentially providing a new therapeutic target for cardiac remodeling following stress overload.


Subject(s)
Calmodulin , Heart Failure , Phosphorylcholine/analogs & derivatives , Sphingosine/analogs & derivatives , Mice , Animals , Calmodulin/metabolism , Calmodulin/pharmacology , Calmodulin/therapeutic use , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Heart Failure/metabolism , Myocytes, Cardiac , Signal Transduction , Ventricular Remodeling , Mice, Inbred C57BL
11.
Water Res ; 249: 120940, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38071904

ABSTRACT

Conventional biological treatment processes cannot efficiently and completely degrade nitroimidazole antibiotics, due to the formation of highly antibacterial and carcinogenic nitroreduction by-products. This study investigated the removal of a typical nitroimidazole antibiotic (ornidazole) during wastewater treatment by a biological sulfidogenic process based on elemental sulfur (S0-BSP). Efficient and stable ornidazole degradation and organic carbon mineralization were simultaneously achieved by the S0-BSP in a 798-day bench-scale trial. Over 99.8 % of ornidazole (200‒500 µg/L) was removed with the removal rates of up to 0.59 g/(m3·d). Meanwhile, the efficiencies of organic carbon mineralization and sulfide production were hardly impacted by the dosed ornidazole, and their rates were maintained at 0.15 kg C/(m3·d) and 0.49 kg S/(m3·d), respectively. The genera associated with ornidazole degradation were identified (e.g., Sedimentibacter, Trichococcus, and Longilinea), and their abundances increased significantly. Microbial degradation of ornidazole proceeded by several functional genes, such as dehalogenases, cysteine synthase, and dioxygenases, mainly through dechlorination, denitration, N-heterocyclic ring cleavage, and oxidation. More importantly, the nucleophilic substitution of nitro group mediated by in-situ formed reducing sulfur species (e.g., sulfide, polysulfides, and cysteine hydropolysulfides), instead of nitroreduction, enhanced the complete ornidazole degradation and minimized the formation of carcinogenic and antibacterial nitroreduction by-products. The findings suggest that S0-BSP can be a promising approach to treat wastewater containing multiple contaminants, such as emerging organic pollutants, organic carbon, nitrate, and heavy metals.


Subject(s)
Bioreactors , Ornidazole , Bioreactors/microbiology , Sulfur/metabolism , Sulfides/metabolism , Anti-Bacterial Agents , Carbon
12.
Clin Chim Acta ; 552: 117694, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38065380

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a prevalent type of non-coding RNAs exhibiting extensive expression in mammalian cells. Owing to their involvement in diverse pathophysiological mechanisms of major depressive disorder (MDD) and their inherent stability in peripheral blood, circRNAs have emerged as potential biomarkers of considerable significance. This study aimed to identify and validate circular RNA HIPK2 (circHIPK2) in MDD patients and to investigate its potential as a biomarker for the diagnosis and prognosis of MDD. METHODS: Patients with MDD (n = 81) and healthy controls (HCs) (n = 48) were recruited for our study (October 2022 to June 2023). The expression of circHIPK2 in plasma was assessed using absolute quantitative polymerase chain reaction (qPCR). RESULTS: The expression of circHIPK2 in plasma of patients with MDD exhibited a significant increase compared to HCs. The circHIPK2 levels showed an area under the curve (AUC) of 0.796, corresponding to a specificity of 97.9% and a sensitivity of 60.4% in diagnosing MDD. Additionally, the rate of change in circHIPK2 over a 14-day period exhibited an AUC curve of 0.819, indicating its predictive value for antidepressive effects. CONCLUSIONS: CircHIPK2 could serve as a potential biomarker for diagnosing MDD and predicting therapeutic effects of MDD.


Subject(s)
Depressive Disorder, Major , RNA, Circular , Animals , Humans , RNA, Circular/genetics , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Biomarkers , Prognosis , Leukocytes, Mononuclear/metabolism , Mammals/metabolism , Carrier Proteins/metabolism , Protein Serine-Threonine Kinases/genetics
13.
J Neuroimmunol ; 387: 578265, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38147784

ABSTRACT

Microglial activation is a common cellular dysfunction in central nervous system inflammation, accompanied by abnormal expression of circular RNAs (circRNAs). YTHDF2, a N6-methyladenosine (m6A) reader, is known as a key element in RNA degradation. Here, lipolysaccharide induced microglia activation in mouse cortex and BV2 cells, accompanied by the decreased YTHDF2 and elevated circHIPK2. YTHDF2 overexpression or circHIPK2 knockdown in BV2 microglia inhibited the expressions of iNOS protein, IL-1ß mRNA and IL-6 mRNA. Subsequent experiments revealed that YTHDF2 facilitated circHIPK2 degradation, thereby alleviating microglia activation. These findings suggest that YTHDF2 overexpression could serve as a therapeutic approach for inhibiting microglia activation.


Subject(s)
Inflammation , Microglia , Animals , Mice , Inflammation/metabolism , Microglia/metabolism , RNA, Messenger , Transcription Factors/metabolism
14.
Adv Mater ; 36(13): e2312159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38117030

ABSTRACT

Developing sacrificial cathode prelithiation technology to compensate for active lithium loss is vital for improving the energy density of lithium-ion battery full-cells. Li2CO3 owns high theoretical specific capacity, superior air stability, but poor conductivity as an insulator, acting as a promising but challenging prelithiation agent candidate. Herein, extracting a trace amount of Co from LiCoO2 (LCO), a lattice engineering is developed through substituting Li sites with Co and inducing Li defects to obtain a composite structure consisting of (Li0.906Co0.043▫0.051)2CO2.934 and ball milled LiCoO2 (Co-Li2CO3@LCO). Notably, both the bandgap and Li─O bond strength have essentially declined in this structure. Benefiting from the synergistic effect of Li defects and bulk phase catalytic regulation of Co, the potential of Li2CO3 deep decomposition significantly decreases from typical >4.7 to ≈4.25 V versus Li/Li+, presenting >600 mAh g-1 compensation capacity. Impressively, coupling 5 wt% Co-Li2CO3@LCO within NCM-811 cathode, 235 Wh kg-1 pouch-type full-cell is achieved, performing 88% capacity retention after 1000 cycles.

15.
Data Brief ; 52: 109868, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146287

ABSTRACT

This article presents a comprehensive dataset containing two types of similarity measures for 23 Mandarin consonant phonemes: perceptual and featural measures. The perceptual measures are derived from confusion matrices obtained through native speakers' identification tasks in quiet and noise-masked conditions. Specific perceptual measures, including confusion rate and perceptual distance, are calculated based on these matrices. Additionally, a phonological feature system is proposed to evaluate the featural differences between each pair of consonants, providing insights into phonological similarity. The dataset reveals a significant positive correlation between the perceptual and featural measures of similarity. Furthermore, distance matrices are generated using the perceptual distance data, and a hierarchical cluster dendrogram is plotted using the unweighted pair group method with arithmetic mean (UPGMA). The dendrogram shows five major clusters of consonants. Future studies can refer to this dataset for quantified perceptual measures of Mandarin consonant similarity. This dataset can also be valuable for future research exploring consonant similarity in perceptual and phonological domains, as well as investigating the influence of linguistic and extralinguistic factors on consonant perception.

16.
Inflamm Bowel Dis ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085663

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is a chronic recurrent inflammatory disease with unclear etiology. Currently, safe and effective treatment options for UC remain to be developed. Kinases, which catalyze the phosphorylation of substrates, have emerged as promising therapeutic targets for inflammatory diseases. We clarified the kinase activity profile and phosphorylation network in UC and aimed to reveal new pathogenic mechanisms and potential therapeutic targets. METHODS: We first performed the phosphoproteomic analysis of rectal tissues from UC patients and healthy individuals. Further bioinformatic analyses revealed the remodeling of key kinases and signaling pathways. Then, we conducted a screening of kinases to identify new potential therapeutic targets through in vivo and in vitro experiments. RESULTS: Phosphoproteomics revealed a drastic remodeling of signaling pathways in UC, such as pathways related to tight junction, adhesion junction, and necroptosis. Additionally, the activity of kinases such as CDK2, CLK1 and AURKB were significantly changed. Additional screening of these kinases identified CDK2 as a potential therapeutic target for UC, as inhibiting CDK2 effectively alleviated dextran sulfate sodium-induced colitis in mice. Further research revealed that suppressing CDK2 remarkably inhibited RIPK1, RIPK3, and MLKL phosphorylation, as well as MLKL oligomerization, thereby inhibiting epithelial necroptosis and protecting the intestinal barrier. CONCLUSIONS: Our research deepened the understanding of UC pathogenesis through the lens of phosphorylation. Moreover, we identified CDK2 as a new potential therapeutic target for UC, revealing a novel role for CDK2 in necroptosis.


We conducted phosphoproteomics of rectal tissues from ulcerative colitis patients and healthy individuals. The results revealed a drastic remodeling of signaling pathways and identified CDK2 as a potential therapeutic target for ulcerative colitis. Inhibiting CDK2 effectively protected the intestinal barrier by suppressing epithelial necroptosis, and thereby alleviated dextran sulfate sodium­induced colitis.

17.
Structure ; 31(12): 1520-1522, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38065074

ABSTRACT

Synthetic ligands often show undesired polypharmacology, affecting the function of multiple targets. In this issue of Structure, Huber et al. developed a PXR-specific agonist based on a promiscuous ligand. Their structure-guided approach exploited the malleability of the PXR ligand-binding pocket, which unlike other nuclear receptors could accommodate bulkier ligands.


Subject(s)
Receptors, Steroid , Receptors, Steroid/chemistry , Pregnane X Receptor , Ligands , Receptors, Cytoplasmic and Nuclear
18.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus, tab
Article in English | IBECS | ID: ibc-226380

ABSTRACT

Objective: This study aims to develop a scale to measure the worry level of patients who will undergo gastrointestinal (GI) endoscopy with deep sedation, and to provide scientific references to alleviate their worries. Method: Based on literature review, panel discussion, patient interview and expert consultation, we developed the first version of the scale. After two pre-investigations, the formal version of the scale was formed, and the reliability and validity were tested on 1389 respondents. Reliability was assessed by Cronbach's alpha. Construct validity was tested by confirmatory factor analysis (CFA) and the Spearman correlations analysis. Results: The scale was composed of four dimensions: financial and time costs, sedation, examination, and psychology. It has 15 items. Reliability and validity were acceptable. The Cronbach's alpha of the whole scale was 0.959 and all the factor loadings were > 0.50. The Spearman correlations of the inter-dimensions ranged from 0.614 to 0.836, and the correlation coefficients between the dimensions and the total score were 0.795 to 0.957. The correlation coefficient between the total scale score and the APAIS was 0.833. Conclusions: This scale has good validity and reliability, which is useful for physicians and medical institutions to take appropriate measures to reduce patients' worries. (AU)


Subject(s)
Humans , Endoscopy, Gastrointestinal/psychology , Endoscopy, Gastrointestinal/statistics & numerical data , Reproducibility of Results , Factor Analysis, Statistical , Negativism
19.
Nanoscale ; 15(44): 17751-17757, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37910003

ABSTRACT

Li-O2 batteries (LOBs) with Li-metal as the anode are characterized by their high theoretical energy density of 3500 W h kg-1 and are thus considered next-generation batteries with an unlimited potential. However, upon cycling in a harsh O2 atmosphere, the poor-quality solid electrolyte interphase (SEI) film formed on the surface of the Li-metal anode cannot effectively suppress the shuttle effect from O2, superoxide species, protons, and soluble side products. These issues lead to aggravated Li-metal corrosion and hinder the practical development of LOBs. In this work, a polyacrylamide-co-polymethyl acrylate (PAMMA) copolymer was innovatively introduced in an ether-based electrolyte as a sacrificial additive. PAMMA was found to preferentially decompose and promote the formation of a dense and Li3N-rich SEI film on the Li-metal surface, which could effectively prohibit the shuttle effect from a series of detrimental species in the Li-O2 cell during the discharge/charge process. Using PAMMA, well-protected Li-metal in a harsh O2 atmosphere and significantly enhanced cycling performance of the Li-O2 cell could be achieved. Thus, the use of a sacrificial polymer additive provides a promising strategy for the effective protection of Li-metal in Li-O2 cells in a severe O2 atmosphere during practical applications.

20.
Int J Clin Health Psychol ; 23(4): 100410, 2023.
Article in English | MEDLINE | ID: mdl-37701761

ABSTRACT

Objective: This study aims to develop a scale to measure the worry level of patients who will undergo gastrointestinal (GI) endoscopy with deep sedation, and to provide scientific references to alleviate their worries. Method: Based on literature review, panel discussion, patient interview and expert consultation, we developed the first version of the scale. After two pre-investigations, the formal version of the scale was formed, and the reliability and validity were tested on 1389 respondents. Reliability was assessed by Cronbach's alpha. Construct validity was tested by confirmatory factor analysis (CFA) and the Spearman correlations analysis. Results: The scale was composed of four dimensions: financial and time costs, sedation, examination, and psychology. It has 15 items. Reliability and validity were acceptable. The Cronbach's alpha of the whole scale was 0.959 and all the factor loadings were > 0.50. The Spearman correlations of the inter-dimensions ranged from 0.614 to 0.836, and the correlation coefficients between the dimensions and the total score were 0.795 to 0.957. The correlation coefficient between the total scale score and the APAIS was 0.833. Conclusions: This scale has good validity and reliability, which is useful for physicians and medical institutions to take appropriate measures to reduce patients' worries.

SELECTION OF CITATIONS
SEARCH DETAIL
...